American University of Beirut, Faculty of Engineering and Architecture INDE 301 Engineering Economy, Quiz N°1

- 1) What is the future worth of an annual series of \$1300 for 39 years at an interest rate of 0.75% per year? a) Use interpolation, b) Use formula.
- 2) A small construction company expects its costs for maintenance of its heavy equipment to be \$15,000 in year 1 and amounts increasing by \$1000 each year thru year 5. At an interest rate of 10% per year, what is the equivalent annual worth of the maintenance costs?
- 3) What is the present worth of an energy cost of \$10,000 in year one and amounts increasing by 6% per year thru year 10, if the interest rate is 12% per year?
- **4) Bonus:** What is the equivalent annual worth (in years 1 thru 10) of repair costs of \$15,000 in years 1 thru 4 and \$20,000 in years 5 thru 9 at an interest rate of 10% per year?

Relations for Discrete Cash Flows with End-of-Period Compounding

Туре	Find/Given	Factor Notation and Formula	Relation	Sample Cash Flow Diagram
Single Amount	F/P Compound amount P/F Present worth	$(F/P,I,n) = (1+i)^n$ $(P/F,I,n) = \frac{1}{(1+i)^n}$	F = P(F/P, t, n) $P = F(P/F, t, n)$ (Sec. 2.1)	0 1 2 n-1 p
Uniform	P/A Present worth A/P Capital recovery	$(P/A, t, n) = \frac{(1+t)^n - 1}{t(1+t)^n}$ $(A/P, t, n) = \frac{t(1+t)^n}{(1+t)^n - 1}$	P = A(P/A,t,n) $A = P(A/P,t,n)$ (Sec. 2.2)	A A ··· A A O O O O O O O O O O O O O O
Series	F/A Compound amount A/F Stnking fund	$(F/A,t,n) = \frac{(1+t)^n - 1}{t}$ $(A/F,t,n) = \frac{t}{(1+t)^n - 1}$	F = A(F/A,t,n) A = F(A/F,t,n) (Sec. 2.3)	0 1 2 n-1 n
Arithmetic Gradient	P_G/G Present worth A_G/G Uniform series	$(P/G,l,n) = \frac{(1+i)^n - ln - 1}{i^n(1+i)^n}$ $(A/G,l,n) = \frac{1}{i} - \frac{n}{(1+i)^n - 1}$ (Gradient only)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Geometric Gradient	P _g /A ₁ and g Present worth	$P_g = \begin{cases} A_1 \left[1 - \left(\frac{1+g}{1+I} \right)^n \right] \\ I - g \\ A_1 \frac{n}{1+I} \end{cases}$ (Gradient and base A_1)	$g \neq 1$ $g = 1$ (Sec. 2.6)	A ₁ A ₁ (1+g) A ₁ (1+g) a 1

0.75%	%	TABLE 3	Discrete	TABLE 3 Discrete Cash Flow: Compound Interest Factors	punoduo	nterest Fa	ctors	0.75%
	Single Payments	ments		Uniform Series Payments	es Payments		Arithmetic	Arithmetic Gradients
•	Compound Amount F/P	Present Worth P/F	Sinking Fund A/F	Compound Amount F/A	Capital Recovery A/P	Present Worth P/A	Gradient Present Worth P/G	Gradient Uniform Series A/G
_	1.0075	0.9926	1.00000	1.0000	1.00750	0.9926		
2	1.0151	0.9852	0.49813	2.0075	0.50563	1.9777	0.9852	0.4981
33	1.0227	0.9778	0.33085	3.0226	0.33835	2.9556	2.9408	0.9950
4	1.0303	0.9706	0.24721	4.0452	0.25471	3.9261	5.8525	1.4907
53	1.2420	0.8052	0.03100	32.2609	0.03850	25.9759	350.0867	13.4774
30	1.2513	0.7992	0.02985	33.5029	0.03735	26.7751	373.2631	13.9407
38	1.3086	0.7641	0.02430	41.1527	0.03180	31.4468	524.9924	16.6946
40	1.3483	0.7416	0.02153	46.4465	0.02903	34.4469	637.4693	18.5058
48	1.4314	9869.0	0.01739	57.5207	0.02489	40.1848	886.8404	22.0691
20	1.4530	0.6883	95910'0	60.3943	0.02406	41.5664	953.8486	22.9476
25	1.4748	0.6780	0.01580	63.3111	0.02330	42.9276	1022.59	23.8211